5(3^2x+2)=31

Simple and best practice solution for 5(3^2x+2)=31 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5(3^2x+2)=31 equation:



5(3^2x+2)=31
We move all terms to the left:
5(3^2x+2)-(31)=0
We multiply parentheses
15x^2+10-31=0
We add all the numbers together, and all the variables
15x^2-21=0
a = 15; b = 0; c = -21;
Δ = b2-4ac
Δ = 02-4·15·(-21)
Δ = 1260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1260}=\sqrt{36*35}=\sqrt{36}*\sqrt{35}=6\sqrt{35}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{35}}{2*15}=\frac{0-6\sqrt{35}}{30} =-\frac{6\sqrt{35}}{30} =-\frac{\sqrt{35}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{35}}{2*15}=\frac{0+6\sqrt{35}}{30} =\frac{6\sqrt{35}}{30} =\frac{\sqrt{35}}{5} $

See similar equations:

| 2x-1-5x=-3 | | 11=c/2 | | 2a+a=150 | | (5x2)3=x | | 1 = q/4− 2 | | 1 = q4− 2 | | 2x-15x=-31 | | 6x÷2=1B | | 4^x=2/3x+5 | | 26=2(m-6)+4(4-6m) | | c2=8c | | 14x-10=88 | | 3(6n+8)+6(n-1)=42 | | 5(z+3)+2(2-1)=3z-11 | | T(d)=30+2d-2 | | 4m+3(6m-2)=12-2m | | -4(7b-7)=112 | | 9x+7=6x+0 | | 3x+1=9x+0 | | 9x+7=4x+0 | | 6x2-2=-11x | | 2x+1=9x+0 | | 1x+0=9x+3 | | 9x+7=5x+0 | | 1x+2=9x+8 | | 9x+7=3x+0 | | f3=475(0.5)3 | | 5/6x=95 | | 1x+2=9x+7 | | 1x+3=9x+0 | | 1x+2=9x+6 | | 1x+2=9x+5 |

Equations solver categories